
Obol Network

Charon
Security Assessment Report

Version: 2.1

June, 2023

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Findings Summary . 3
Detailed Findings 4

Summary of Findings 5Kryptology Does Not Verify The Length of Commitments . 6Frost DKG Does Not Validate Message Source Matches the Sender 8
nil Pointer References From Protobuf Messages . 10Inadequate Input Parameter Checks Resulting in Slice Bounds Out-of-Range Error 13Lack of Size Checks When Slicing Arrays . 16Insufficient Validation of Consensus Messages Leads to Panics 17QBFT Consensus Allows Replay of Justification Messages . 19Insufficient Error Handling . 20Panics in coinbase/kryptology Frost Protocol . 22Frost Broadcast Messages Do Not Use Reliable Broadcast . 24Vulenerable Dependencies . 25Outdated Dependencies . 26RLP Length in Bits Rather Than Bytes . 28Duplicate Keys Allowed in ENR . 30Insufficient Validation of Consensus Message Types . 31
sigagg Does Not Ensure t Partials Are Received . 32
sigagg Does Not Verify the Reconstructed Signature . 33Aggregate Lock Only Collects t Signatures Rather Than n . 34CreateDKG Allows the Threshold to be Larger Than the Number of Operators 35CreateDKG Does Not Validate the Checksum of the Withdrawal Addresses 36Miscellaneous General Comments . 37

A Test Suite 38

B Vulnerability Severity Classification 41

1

Charon Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Obol Network’s dis-tributed validator client (Charon) implementation.
The review focused solely on the security aspects of the Golang implementation of the solution, though generalrecommendations and informational comments are also provided.

Disclaimer

Sigma Prime makes all effort but holds no responsibility for the findings of this security review. Sigma Primedoes not provide any guarantees relating to the function of the smart contracts or other in-scope items. SigmaPrime makes no judgements on, or provides any security review, regarding the underlying business model or theindividuals involved in the project.

Document Structure

The first section provides an overview of the functionality of the Obol Network’s distributed validator client(Charon) code contained within the scope of the security review.
A summary followed by a detailed review of the discovered vulnerabilities is then given which assigns each vul-nerability a severity rating (see Vulnerability Severity Classification), an open/closed/resolved status and a recom-mendation. Additionally, findings which do not have direct security implications (but are potentially of interest)are marked as informational.
Outputs of automated testing that were developed during this assessment are also included for reference (in theAppendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the Obol Network’s distributed validator client (Charon) implementation.

Overview

Distributed validator client Charon is a HTTP middleware client for Ethereum staking that enables users to runa single validator across a group of independent nodes.
Charon is accompanied by a web application called the Distributed Validator Launchpad for distributed validatorkey creation.
Charon is used by stakers to distribute the responsibility of running Ethereum Validators across a number ofdifferent instances and client implementations.

Page | 2

Charon Security Assessment Summary

Security Assessment Summary

This time-boxed security review was conducted on the files hosted on the Obol Network’s Charon repositoryand were assessed at commit 707b07a.
Note: native Go and Go Ethereum libraries and any external dependencies were excluded from the primary focus of
this assessment.

The manual code review section of the report is focused on identifying issues/vulnerabilities associated with thebusiness logic implementation of the components in scope. This includes their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the Go runtime andEthereum protocol.
To support this review, the testing team used the following automated testing tools:

• golangci-lint: https://github.com/golangci/golangci-lint
• semgrep-go: https://github.com/dgryski/semgrep-go
• native go fuzzing: https://go.dev/doc/fuzz/

Output for these automated tools is available upon request.

Findings Summary

The testing team identified a total of 21 issues during this assessment. Categorised by their severity:
• Critical: 2 issues.
• High: 5 issues.
• Medium: 3 issues.
• Low: 5 issues.
• Informational: 6 issues.

Page | 3

https://github.com/ObolNetwork/charon
https://github.com/ObolNetwork/charon/tree/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd
https://github.com/golangci/golangci-lint
https://github.com/dgryski/semgrep-go
https://go.dev/doc/fuzz/

Charon Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identifiedwithin theObol Network’s distributedvalidator client (Charon) implementation.
Each vulnerability has a severity classification which is determined from the likelihood and impact of each issueby the matrix given in the Appendix: Vulnerability Severity Classification.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 4

Summary of Findings

ID Description Severity Status
OBOL-01 Kryptology Does Not Verify The Length of Commitments Critical Resolved

OBOL-02 Frost DKG Does Not Validate Message Source Matches the Sender Critical Resolved

OBOL-03 nil Pointer References From Protobuf Messages High Resolved

OBOL-04 Inadequate Input Parameter Checks Resulting in Slice Bounds Out-of-Range Error High Resolved

OBOL-05 Lack of Size Checks When Slicing Arrays High Resolved

OBOL-06 Insufficient Validation of Consensus Messages Leads to Panics High Resolved

OBOL-07 QBFT Consensus Allows Replay of Justification Messages High Resolved

OBOL-08 Insufficient Error Handling Medium Closed

OBOL-09 Panics in coinbase/kryptology Frost Protocol Medium Resolved

OBOL-10 Frost Broadcast Messages Do Not Use Reliable Broadcast Medium Resolved

OBOL-11 Vulenerable Dependencies Low Closed

OBOL-12 Outdated Dependencies Low Closed

OBOL-13 RLP Length in Bits Rather Than Bytes Low Resolved

OBOL-14 Duplicate Keys Allowed in ENR Low Resolved

OBOL-15 Insufficient Validation of Consensus Message Types Low Resolved

OBOL-16 sigagg Does Not Ensure t Partials Are Received Informational Resolved

OBOL-17 sigagg Does Not Verify the Reconstructed Signature Informational Resolved

OBOL-18 Aggregate Lock Only Collects t Signatures Rather Than n Informational Closed

OBOL-19 CreateDKG Allows the Threshold to be Larger Than the Number of Op-erators Informational Resolved

OBOL-20 CreateDKG Does Not Validate the Checksum of the Withdrawal Ad-dresses Informational Resolved

OBOL-21 Miscellaneous General Comments Informational Resolved

5

Charon Detailed Findings

OBOL-01 Kryptology Does Not Verify The Length of Commitments
Asset github.com/coinbase/kryptology

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

During the Frost DKG, parties participating in the protocol first commit to a polynomial of degree t , where t is thethreshold of malicious nodes. The verification of the polynomial commitments does not ensure the length is t+1 (adegree t polynomial has t+1 coefficients).
The impact of forgoing these checks is an attacker can arbitrarily increase the length of the polynomial by creatingcommitments larger than t+1 .
The vulnerable code can be found in the coinbase/kryptology repository. The following verifier shows the lack ofchecks to ensure the length of Commitments is t+1 .
type FeldmanVerifier struct {

Commitments []curves.Point
}

func (v FeldmanVerifier) Verify(share *ShamirShare) error {
curve := curves.GetCurveByName(v.Commitments[0].CurveName())
err := share.Validate(curve)
if err != nil {

return err
}
x := curve.Scalar.New(int(share.Id))
i := curve.Scalar.One()
rhs := v.Commitments[0]

for j := 1; j < len(v.Commitments); j++ {
i = i.Mul(x)
rhs = rhs.Add(v.Commitments[j].Mul(i))

}
sc, _ := curve.Scalar.SetBytes(share.Value)
lhs := v.Commitments[0].Generator().Mul(sc)

if lhs.Equal(rhs) {
return nil

} else {
return fmt.Errorf("not equal")

}
}

The severity is rated as high as it undermines the core assumptions of Frost DKG, that polynomial commitments are oflength t+1 . The security proofs provided in the academic paper may no longer hold true.

Recommendations

To resolve the issue, ensure that the length of Commitments received from other parties in the DKG is t+1 . This can
be achieved by modifying the coinbase/kryptology repository or adding checks to charon when the messages are

Page | 6

https://github.com/coinbase/kryptology/blob/master/pkg/sharing/feldman.go#L16-L42

Charon Detailed Findings

received.
Note here we are referring to the "threshold" t as the degree of the polynomial which has t+1 coefficients. Somepapers and implementations use the terminology of "threshold" as the number of parties required to recreate the sharedsecret. That is "threshold" may refer to either the number of coefficients or the degree of the polynomial dependingon the context.

Resolution

The issue has been resolved in PR #2007 which checks the length of the commitments when they are initially received,during round 1 of Frost DKG.

Page | 7

https://github.com/ObolNetwork/charon/pull/2007/files

Charon Detailed Findings

OBOL-02 Frost DKG Does Not Validate Message Source Matches the Sender
Asset dkg/frostp2p.go

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

The Frost DKG implementation receives messages from peers. Each message contains the type FrostMsgKey whichcontains three fields.
• ValIdx : The validator index (0 indexed)
• SourceId : The sender share index (1 indexed)
• TargetId : The receiver share index (1 indexed)

Below is a snippet of the code used to decode the round 1 messages and pass them to the Frost protocol. There is novalidation of the FrostMsgKey fields with each message received.
tcpNode.SetStreamHandler(round1Protocol(clusterID), func(s network.Stream) {

ctx = log.WithCtx(ctx, z.Str("peer", p2p.PeerName(s.Conn().RemotePeer())))
defer s.Close()

b, err := io.ReadAll(s)
if err != nil {

log.Error(ctx, "Read round 1 wire", err)
return

}
msg := new(pb.FrostRound1Msg)
if err := proto.Unmarshal(b, msg); err != nil {

log.Error(ctx, "Unmarshal round 1 proto", err)
return

}

mu.Lock()
defer mu.Unlock()

pID := s.Conn().RemotePeer()
if !knownPeers[pID] {
log.Warn(ctx, "Ignoring unknown round 1 peer", nil, z.Any("peer", p2p.PeerName(pID)))
return

} else if dedupRound1[pID] {
log.Debug(ctx, "Ignoring duplicate round 1 message", z.Any("peer", p2p.PeerName(pID)))
return

}
dedupRound1[pID] = true

round1Recv <- msg
})

Since SourceId is not validated, a peer can send messages on behalf of other peers. A malicious attacker could sendmessage on behalf of other peers to modify their commitments. This would allow the attacker to gain control overmore than a threshold number of shares and thereby recover the secret key.
The issue is present for messages received in both round 1 and 2. However, round 1 has been used as an exampleabove.

Page | 8

Charon Detailed Findings

Recommendations

FrostMsgKey can be found in each of the following messages.

• FrostRound1Msg

– Each element of Casts []*FrostRound1Cast

– Each element of P2Ps ShamirShare

• FrostRound2Msg

– Each element of Casts []*FrostRound2Cast

For each FrostMsgKey that are listed above perform the following validation.

• 0 <= ValIdx < numValidators

• 1 <= SourceId <= numNodes

• 1 <= TargetId <= numNodes

• SourceId matches the peer ID (i.e. can check frostP2P.peers[sourceId] == s.Conn().RemotePeer())
• TargetId matches our peer ID

Note that nil pointer checks need to be performed before accessing any of the above listed pointers. See OBOL-03for more details on nil pointers in Protobuf.

Resolution

The recommendations have been implemented in PRs #1896 and #2107.

Page | 9

https://github.com/ObolNetwork/charon/pull/1896/files
https://github.com/ObolNetwork/charon/pull/2107/files

Charon Detailed Findings

OBOL-03 nil Pointer References From Protobuf Messages
Asset dkg/frostp2p.go, core/parsigex/parsigex.go, core/proto.go
Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

Protobuf allows decoding pointer objects to nil . A nil pointer reference occurs when a program attempts to accessor dereference a pointer that has not been initialised, resulting in a runtime panic.

DKG

Charon’s DKG functionality is susceptible to unexpected panics due to nil pointer references. It is possible for anattacker to exploit this vulnerability by sending a specifically crafted payload as a FrostRound1Msg or FrostRound2Msgmessage, causing the service to crash.
The following payloads were found to trigger unexpected panics:

• \x92\x00\x00 as FrostRound1Msg , causing panic in shamirShareFromProto()

• "\x0a\x44\x12\x20" + 66 * "\x41" as FrostRound1Msg , causing panic in round1CastFromProto()

• \x0a\x06\x12\x01\xd6\x1a\x01\xd6 as FrostRound2Msg , causing panic in round2CastFromProto()

The panics occur in dkg/frostp2p.go at:

• shamirShareFromProto() line [314] due to referencing shamir.Key , which is intentially nil in the crafted payload
• round2CastFromProto() line [379] due to referencing cast.Key , which is intentially nil in the crafted payload
• round1CastFromProto() line [354] due to referencing cast.Key , which is intentially nil in the crafted payload

Core

The following functions will result in a nil pointer panic in core/proto.go if nil is passed as one of the parameters.

• DutyFromProto(duty *pbv1.Duty) if duty is nil .
• ParSignedDataFromProto(typ DutyType, data *pbv1.ParSignedData) if data is nil .
• ParSignedDataSetFromProto(typ DutyType, set *pbv1.ParSignedDataSet) if set is nil .
• UnsignedDataSetFromProto(typ DutyType, set *pbv1.UnsignedDataSet) if set is nil .

Page | 10

Charon Detailed Findings

In the file core/parsigex/parsigex.go in the function handle() if either pb.DataSet or pb.Duty are nil then
the above-mentioned functions DutyFromProto() and ParSigDataSetFromProto() will panic. Similarly, if the map
pb.DataSet.Set contains a nil value for any of the *ParSignedData objects then ParSignedDataFromProto() willpanic.

Consensus

In addition to the panics that are mentioned in OBOL-06, there are nil pointer panics that may arise from decodingprotobuf objects as nil .
When parsing and executing consensus messages it is possible for nil pointer exceptions to arise. The recursive
decoding of messages and justifications in core/consensus/msg.go::newMsg() will panic if either pbMsg or any element
in the array justification is nil . Due to the recursive nature of each justification calling newMsg(j, nil) on line
[57] it is possible for nil pointers to arise on objects not checked by the calling function.

Recommendations

Use defensive programming techniques such as checking pointers for nil values before attempting to access or deref-erence them.
It is recommended to add nil checks to all functions that take a pointer as a parameter or decode a struct which is orcontains a pointer. However, at a minimum this technique may be added to the following functions.

• core/proto.go::DutyFromProto()

• core/proto.go::ParSignedDataFromProto()

• core/proto.go::ParSignedDataSetFromProto()

• core/proto.go::UnsignedDataSetFromProto()

• core/parsigex/parsigex.go::handle()

• dkg/frostp2p.go::round1CastFromProto()

• dkg/frostp2p.go::round2CastFromProto()

• dkg/frostp2p.go::shamirShareFromProto()

• dkg/frostp2p.go::keyFromProto()

• dkg/frostp2p.go::newFrostP2P() (specifically the stream handlers)
• core/priority/component.go::topicResultFromProto()

• core/priority/prioritiser.go::handleRequest()

• core/consensus/component.go::handle()

• core/consensus/msg.go::newMsg()

Page | 11

Charon Detailed Findings

Resolution

A generic nil checker package called protonil has been developed by the Obol team. The protonil.Check()

function recursively checks protobuf messages for nil values where applicable. The protonil.Check() function isexecuted in Charon for each libp2p message when it is received. Changes can be seen in PR #2346.
Additionally, manual validation of pointers has been added in handler functions to prevent nil pointers from beingdeferenced.

Page | 12

https://github.com/ObolNetwork/charon/pull/2346/files

Charon Detailed Findings

OBOL-04 Inadequate Input Parameter Checks Resulting in Slice Bounds Out-of-Range Error
Asset eth2util/rlp/rlp.go

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

The current implementation of the code lacks sufficient input parameter checks, which results in invalid values gener-ated that can cause unexpected panics when used with slicing arrays. This issue is prevalent in RLP and ENR relatedparts of the codebase and can cause significant disruptions to the system’s functionality.
By using specifically crafted payloads, it is possible to trigger unexpected panics due to slice bounds out of range errors.
The following payloads were found to trigger the panics:

• []byte("\xbf\x9b00000000") in DecodeBytes()

• []byte("\x87\xff\xff\xff\xff\xff\xff\xff\xff\xff0") in DecodeBytesList()

The errors trigger in code/charon/eth2util/rlp/rlp.go line [88] and DecodeBytesList() line [54] respectively.
This is due to both functions calling decodeLength() , which in turn calls fromBigEndian() , which does not have bounds
checks on provided input and may return incorrect length and offset values. Once these values are used to slicearrays, unexpected bounds out of range errors may occur.
Furthermore, decodeLength() may be negative as fromBigEndian() casts a uint64 to int which may result in a
negative value if the value is larger the 263 (noting only 64 bit Operating Systems are supported). The length of decodedbytes should be non-negative to prevent infinite loop attacks and negative slice indexing.

Page | 13

Charon Detailed Findings

// DecodeBytesList returns the list of byte slices contained in the given RLP encoded byte slice.
func DecodeBytesList(input []byte) ([][]byte, error) {

if len(input) == 0 {
return nil, nil

}

offset, length, err := decodeLength(input)
if err != nil {

return nil, err
}

if offset+length > len(input) { // @audit may overflow or be negative
return nil, errors.New("input too short")

}

var items [][]byte
for i := offset; i < offset+length; {
itemOffset, itemLength, err := decodeLength(input[i:]) // @audit unsafe slice index
if err != nil {

return nil, err
}

start := i + itemOffset
end := i + itemOffset + itemLength // @audit may overflow or be less than start

if end > len(input) {
return nil, errors.New("input too short")

}

items = append(items, input[start:end]) // @audit unsafe slice index

i = end
}

return items, nil
}

func DecodeBytes(input []byte) ([]byte, error) {
if len(input) == 0 {
return nil, nil

}

offset, length, err := decodeLength(input)
if err != nil {

return nil, err
}

if offset+length > len(input) { // @audit may overflow or have negative numbers
return nil, errors.New("input too short")

}

return input[offset : offset+length], nil
}

// fromBigEndian returns the integer encoded as big endian at the provided byte slice offset and length.
func fromBigEndian(b []byte, offset int, length int) int { //@audit validate offset and length are non-negative and less than

len(b)↪→
var x uint64
for i := offset; i < offset+length; i++ {
x = x<<8 | uint64(b[i]) // @audit unsafe slice indexing

}

return int(x) //@audit may cast to negative value
}

Page | 14

Charon Detailed Findings

Recommendations

Implement input parameter checks to prevent invalid values from being used as slice indices. This can be done bychecking that the input parameters are within the range of valid values before using them in slicing arrays.
For example:
// Add in DecodeBytesList()
if end > len(input) || start < 0 || end < 0 || start > end {

return nil, errors.New("input too short")
}

// Add in DecodeBytes()
if offset+length > len(input) || length < 0 || offset < 0 || offset > offset+length {

return nil, errors.New("input too short")
}

// Add in fromBigEndian()
if offset >= len(b) || offset+length >= len(b) {

// return an error of fixed value, depending on business requirements
}

This will prevent unexpected panics and ensure the system functions as intended.
Additionally, prevent decodeLength() from returning a negative length .

Resolution

This finding has been resolved and recommendations implemented in PR 1990.

Page | 15

https://github.com/ObolNetwork/charon/pull/1990

Charon Detailed Findings

OBOL-05 Lack of Size Checks When Slicing Arrays
Asset cmd/relay/p2p.go

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

The reviewed code contains instances where arrays are being sliced without first checking the size of the array.
This can result in the program crashing if the array being sliced is of insufficient size. This is particularly problematic inthe context of p2p when receiving data from other connected peers, as malicious peers may intentially send malformeddata to crash the system.
In cmd/relay/p2p.go on line [220]:

199 // getPeerInfo returns the peer's cluster hash and true.
func getPeerInfo(ctx context.Context, tcpNode host.Host, pID peer.ID, name string) (string, bool, error) {

201 info, rtt, ok, err := peerinfo.DoOnce(ctx, tcpNode, pID)
if p2p.IsRelayError(err) {

203 // Ignore relay errors, since peer probably not connected anymore.
return "", false, nil

205 } else if err != nil {
return "", false, err

207 } else if !ok {
// Group peers that don't support the protocol with unknown cluster hash.

209 return unknownCluster, true, nil
}

211
hash := clusterHash(info.LockHash)

213 peerPingLatency.WithLabelValues(name, hash).Observe(rtt.Seconds() / 2)

215 return hash, true, nil
}

217
// clusterHash returns the cluster hash hex from the lock hash.

219 func clusterHash(lockHash []byte) string {
return hex.EncodeToString(lockHash)[:7] // @audit No size checks here, if lockHash <= 3 characters, this will panic

221 }

The lack of size checks when slicing arrays can result in the program crashing or becoming unstable if the sliced arrayis of insufficient size. This can lead to unexpected crashes affecting overall availability of the system.

Recommendations

Review all instances where arrays are being sliced to ensure that size checks are being performed prior to slicing.Specifically, the program should check the size of the array before attempting to slice it, and should handle any errorsthat occur gracefully.

Resolution

This finding has been resolved and recommendations implemented in PR 2077.
Page | 16

https://github.com/ObolNetwork/charon/pull/2077

Charon Detailed Findings

OBOL-06 Insufficient Validation of Consensus Messages Leads to Panics
Asset core/consensus/component.go & core/consensus/msg.go

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

Multiple panics are reachable in the consensus handle() function.
First, a panic is reachable in verifyMsgSign() if public key is nil . The case where pubkey is nil arises when a
consensus message is sent with a PeerIdx which does not have a corresponding public share.
Examining the code snippet below c.pubkeys[pbMsg.Msg.PeerIdx] will return nil if the PeerIdx is not mapped. That
is if PeerIdx <= 0 or PeerIdx > numValidators .
A second panic can be reached if pbMsg.Justification has an element in the array that is nil . That is if msg is nil

on line [357]. It will access msg.PeerIdx which results in a nil pointer panic.
351 if ok, err := verifyMsgSig(pbMsg.Msg, c.pubkeys[pbMsg.Msg.PeerIdx]); err != nil { //@audit may pass a `nil` pubkey

return nil, false, errors.Wrap(err, "verify consensus message signature", z.Any("duty", duty))
353 } else if !ok {

return nil, false, errors.New("invalid consensus message signature", z.Any("duty", duty))
355 }

357 for _, msg := range pbMsg.Justification {
if ok, err := verifyMsgSig(msg, c.pubkeys[msg.PeerIdx]); err != nil { // @audit may pass a `nil` pubkey or panics if `msg` is

`nil`↪→
359 return nil, false, errors.Wrap(err, "verify consensus justification signature", z.Any("duty", duty))

} else if !ok {
361 return nil, false, errors.New("invalid consensus justification signature", z.Any("duty", duty))

}
363 }

During verifyMsgSig() if pubkey is nil it will panic when accessed in recovered.IsEqual(pubkey) .
func verifyMsgSig(msg *pbv1.QBFTMsg, pubkey *k1.PublicKey) (bool, error) {

if msg.Signature == nil {
return false, errors.New("empty signature")
}

clone := proto.Clone(msg).(*pbv1.QBFTMsg)
clone.Signature = nil
hash, err := hashProto(clone)
if err != nil {

return false, err
}

recovered, err := k1util.Recover(hash[:], msg.Signature)
if err != nil {

return false, errors.Wrap(err, "recover pubkey")
}

return recovered.IsEqual(pubkey), nil
}

Page | 17

Charon Detailed Findings

Recommendations

It is recommended to perform nil checks in verifyMsgSig() to ensure both pubkey and msg are not nil .
Furthermore, ensure each index of c.pubkeys is checked through value, exists := map[index] syntax and the keyexists.
Additionally ensure each element of the array pbMsg.Justification is not nil .

Resolution

This finding has been resolved and recommendations implemented in PR 2040.

Page | 18

https://github.com/ObolNetwork/charon/pull/2040

Charon Detailed Findings

OBOL-07 QBFT Consensus Allows Replay of Justification Messages
Asset core/consensus/component.go

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

It is possible to replay consensus justification messages from other duties.
There are a lack of checks to ensure the duty of a justification matches the duty of the message.
The check should occur in core/consensus/component.go when validating justifications.
for _, msg := range pbMsg.Justification {

if ok, err := verifyMsgSig(msg, c.pubkeys[msg.PeerIdx]); err != nil {
return nil, false, errors.Wrap(err, "verify consensus justification signature", z.Any("duty", duty))

} else if !ok {
return nil, false, errors.New("invalid consensus justification signature", z.Any("duty", duty))

}
}

The impact is a malicious node could have messages justified which were not intended for this duty.

Recommendations

Ensure the duty in each justification exactly matches that of the message.

Resolution

This finding has been resolved and recommendations implemented in PR 2079.

Page | 19

https://github.com/ObolNetwork/charon/pull/2079

Charon Detailed Findings

OBOL-08 Insufficient Error Handling
Asset app/eth2wrap/eth2wrap.go, app/lifecycle/manager.go
Status Closed: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

Several instances in the code were identified where panic is triggered when an error or an edge case is encountered.Insufficient error handling can result in the software crashing or becoming unavailable when errors are encountered.
While panics may help developers identify and fix issues during development, they can have negative impacts on thestability and availability of the software in production. To ensure that the software remains available and operational,it is important to handle errors gracefully, rather than relying on panics to identify issues.
Some examples of panics that should be handled gracefully instead include (note, this may not be exhaustive list of alloccurrences in the code):

• /app/eth2wrap/eth2wrap.go on line [376]:
func (s *bestSelector) Increment(i int) {

s.mu.Lock()
defer s.mu.Unlock()

if i < 0 || i >= s.n {
panic("invalid index") // This should never happen

}

if time.Since(s.start) > s.period { // Reset counters after period.
s.counts = make([]int, s.n)
s.start = time.Now()

}

s.counts[i]++
}

• app/lifecycle/manager.go on line [49] and line [68]:
if m.started {
panic("cycle already started")

}

Recommendations

Review all instances of panic in the code and replace them with more robust error-handling mechanisms.
Specifically, errors should be handled gracefully, and the system should be designed to continue operating in the eventof an error. This will help ensure that the software remains stable and available at all times.

Page | 20

Charon Detailed Findings

Resolution

The Obol development team has advised that this issue will not be addressed and marked it as WONTFIX .

Page | 21

Charon Detailed Findings

OBOL-09 Panics in coinbase/kryptology Frost Protocol
Asset github.com/coinbase/kryptology

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

A reachable panic exists in the external library github.com/coinbase/kryptology repository. The panic exists in the FrostDKG round 2 if there is an ID in basic cast that does not have a Shamir share.
The following code snippet is taken from kryptology/pkg/dkg/frost/dkg_round2.go for the function Round2() .
func (dp *DkgParticipant) Round2(bcast map[uint32]*Round1Bcast, p2psend map[uint32]*sharing.ShamirShare) (*Round2Bcast, error) {

// ... snipped for brevity

// Step 2 - for j in 1,...,n
for id := range bcast {

// ... snipped for brevity

// Step 5 - FeldmanVerify
fji := p2psend[id] // @audit this value may not exist and return nil
if err = bcast[id].Verifiers.Verify(fji); err != nil { // @audit panics in `Verify(nil)`

return nil, fmt.Errorf("feldman verify fails for participant with id %d\n", id)
}

}

The panic occurs if there is a key in the map bcast which does not exist in p2psend . This will cause the value fji to
be nil and result in a nil pointer exception in the function FeldmanVerifier.Verify() .
The panic is reachable from the Charon protocol by supplying round 2 messages with invalid IDs. The issue OBOL-02should prevent this issue by performing validation on the IDs.

Recommendations

The issue should be further mitigated in the upstream coinbase/krpytology library. First, ensure that id exists in the
map p2psend by using the value, exists := map[key] syntax.
Second, ensure the pointer retrieved is non-nil, that is check fji != nil .
Finally, add a check to FeldmanVerifier.Verify() to ensure share != nil .
Although the second point is sufficient to prevent any nil pointer exceptions from arising in charon , all three solutionsare recommended to increase the robustness of the code. This will prevent the introduction of bugs in future updatesor when used by third parties.

Page | 22

https://github.com/coinbase/kryptology

Charon Detailed Findings

Resolution

The finding has been resolved by implementing fix for OBOL-02 (PR 1896 and PR 2107).

Page | 23

https://github.com/ObolNetwork/charon/pull/1896/files
https://github.com/ObolNetwork/charon/pull/2107/files

Charon Detailed Findings

OBOL-10 Frost Broadcast Messages Do Not Use Reliable Broadcast
Asset dkg/frostp2p.go

Status Resolved: See Resolution
Rating Severity: Medium Impact: Medium Likelihood: Medium

Description

Frost protocol can be instantiated using either reliable broadcast or a Signature Aggregator. The Charon implementationof reliable broadcast for Frost DKG is not correctly implemented. Reliable broadcast requires all parties to receiveidentical messages during a broadcast. The current implementation of broadcast will send each message directly to apeer and ensure it is received.
The issue with the current implementation is that a malicious party may "broadcast" different messages to each peer.The peers will be unaware they have received a different message to other parties can will continue operating theprotocol.
This undermines the security assumptions of the protocol and invalidates the security proof. It is therefore possible forunforeseen attacks to interrupt or expose secrets of the DKG.

Recommendations

To mitigate the issue either implement a Signature Aggregator or modify the broadcast to implement reliable broadcast.

Resolution

Reliable broadcast has been implemented in PR #1896.

Page | 24

https://github.com/ObolNetwork/charon/pull/1896

Charon Detailed Findings

OBOL-11 Vulenerable Dependencies
Asset charon/*

Status Closed: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

The reviewed code base indirectly uses a vulnerable dependency golang/github.com/btcsuite/btcd@v0.22.1 . Thisversion of the dependency is known to be vulnerable to two known issues - CVE-2022-39389: Improper Input Valida-tion and CVE-2022-44797: Improper Restriction of Operations within the Bounds of a Memory Buffer.
CVE-2022-39389 could cause a node to enter a degraded state if exploited, whilst CVE-2022-44797 mishandles witnesssize checking, which could lead to unexpected behaviour or panics.
Note, due to the vulnerable library being an indirect dependency to Charon, it is unclear whether it is directly exploitablein the reviewed codebase.

Recommendations

Update the dependency to the latest version that addresses the known vulnerabilities.
Additionally, it is important to regularly review and update all dependencies to ensure that they remain up-to-date andsecure.

Resolution

The Obol development team advised the dependency is not used, as it is used for the secp256k1 curve in the Kryptol-ogy library which is not called by Obol.

Page | 25

https://ossindex.sonatype.org/vulnerability/CVE-2022-44797?component-type=golang&component-name=github.com%2Fbtcsuite%2Fbtcd&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.42
https://ossindex.sonatype.org/vulnerability/CVE-2022-44797?component-type=golang&component-name=github.com%2Fbtcsuite%2Fbtcd&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.42
https://ossindex.sonatype.org/vulnerability/CVE-2022-39389?component-type=golang&component-name=github.com%2Fbtcsuite%2Fbtcd&utm_source=nancy-client&utm_medium=integration&utm_content=1.0.42

Charon Detailed Findings

OBOL-12 Outdated Dependencies
Asset charon/*

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The reviewed code base utilises several external dependencies that are not up-to-datewith the latest available versions.
The following lists identified outdated dependencies and their latest versions available as at the time of writing:

1. github.com/bufbuild/buf v1.14.0 (latest version is v1.17.1)
2. github.com/golang/snappy v0.0.4 (latest version is v0.0.5)
3. github.com/gorilla/mux v1.8.0 (latest version is v1.8.1)
4. github.com/spf13/cobra v1.6.1 (latest version is v1.6.3)
5. github.com/spf13/pflag v1.0.5 (latest version is v1.0.8)
6. github.com/spf13/viper v1.15.0 (latest version is v1.16.0)
7. github.com/stretchr/testify v1.8.1 (latest version is v1.8.3)
8. golang.org/x/oauth2 v0.5.0 (latest version is v0.5.2)
9. gopkg.in/cenkalti/backoff.v1 v1.1.0 (latest version is v2.2.1)

The use of outdated dependencies could leave the system vulnerable to exploitation by attackers. As vulnerabilitiesand bugs are often discovered and patched in later versions of software, using outdated dependencies increases thelikelihood of an attacker finding and exploiting these flaws.
A special note is on the dependency coinbase/kryptology which has been marked as archived as of 9th September2022. It is strongly advised not to rely on archived repositories.

Recommendations

Update external dependencies to their latest versions available to ensure that the system is protected against anyknown bugs and vulnerabilities.
Additionally, it is important to regularly review and update dependencies to ensure that they remain up-to-date andsecure.
It is recommended to either swap out coinbase/kryptology for another cryptography library or fork it and activelymaintain the fork.

Page | 26

https://github.com/coinbase/kryptology

Charon Detailed Findings

Resolution

The Obol development team advised that all dependencies are tracked by Dependabot and are kept up-to-date.

Page | 27

Charon Detailed Findings

OBOL-13 RLP Length in Bits Rather Than Bytes
Asset eth2util/rlp/rlp.go

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

RLP decoding validates the length is not more than 64 bits before passing this value to fromBigEndian() which expects
bytes.
The function decodeLength() performs the deserialisation of length as follows.
func decodeLength(item []byte) (offset int, length int, err error) {

if len(item) == 0 {
return 0, 0, errors.New("input too short")

}

prefix := item[0]

if prefix < 0x80 {
return 0, 1, nil

}

if prefix < 0xb8 {
return 1, int(prefix - 0x80), nil

}

if prefix < 0xc0 {
length = int(prefix - 0xb7)
if length > 64 { // @audit 64 bits rather than 8 bytes

return 0, 0, errors.New("invalid length prefix")
}

return 1 + length, fromBigEndian(item, 1, length), nil
}

if prefix < 0xf8 {
return 1, int(prefix - 0xc0), nil

}

length = int(prefix - 0xf7)
if length > 64 { // @audit 64 bits rather than 8 bytes

return 0, 0, errors.New("invalid length prefix")
}

return 1 + length, fromBigEndian(item, 1, length), nil
}

The function fromBigEndian() expects length to be in units of bytes rather than bits. It is therefore possible to have
a length larger than the uint64 .

Recommendations

For both cases mentioned above ensure that length is less than or equal to 8 rather than 64 and encode values inbytes rather than bits.

Page | 28

Charon Detailed Findings

Resolution

This finding has been resolved and recommendations implemented in PR 2081.

Page | 29

https://github.com/ObolNetwork/charon/pull/2081

Charon Detailed Findings

OBOL-14 Duplicate Keys Allowed in ENR
Asset eth2util/enr/enr.go

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Duplicate keys may be used in the ENR maping. The last key in the set of the duplicates will overwrite the previouslyrecorded values.
EIP778 states that each key should only occur once in the mapping as seen by the quoted text below.
The key/value pairs must be sorted by key and must be unique, i.e. any key may be present only once.

The implementation in part of the function Parse() does not check for unqiue keys and overwrites the r.kvs withnew values when a duplicate key occurs.
82 for i := 2; i < len(elements); i += 2 {

r.kvs[string(elements[i])] = elements[i+1] // @audit should check existence before overwriting
84

switch string(elements[i]) {
86 case keySecp256k1:

r.PubKey, err = k1.ParsePubKey(elements[i+1])
88 if err != nil {

return Record{}, errors.Wrap(err, "invalid secp256k1 public key")
90 }

case keyID:
92 if string(elements[i+1]) != valID {

return Record{}, errors.New("non-v4 identity scheme not supported")
94 }

}
96 }

Recommendations

The recommendation is to add a check in each iteration of the above loop to ensure r.kvs does not have an entry forthe current key.

Resolution

This finding has been resolved and recommendations implemented in PR 2073.

Page | 30

https://eips.ethereum.org/EIPS/eip-778
https://github.com/ObolNetwork/charon/pull/2073

Charon Detailed Findings

OBOL-15 Insufficient Validation of Consensus Message Types
Asset core/consensus/component.go

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

There is insufficient validation of pbv1.ConsensusMsg.Msg.Type and pbv1.ConsensusMsg.Justification[i].Msg.Type .
A type value may be supplied which is greater than or equal to msgSentinel or less than or equal to MsgUnknown .
The impact is a panic will occur in core/qbft/qbft.go in the function isJustified() , however this panic recovers in
Run() . As the panic recovers this is rated a low severity issue.

Recommendations

To avoid panics proper validation should occur for each message and justification.
This may be achieved by performing the check qbft.MsgType(type).Valid() for each message and justification. Con-
sider adding these checks to the function core/consensus/msg.go::newMsg() .

Resolution

Additional checks are performed on each consensus message in PR #2115.

Page | 31

https://github.com/ObolNetwork/charon/pull/2115/files

Charon Detailed Findings

OBOL-16 sigagg Does Not Ensure t Partials Are Received
Asset core/sigagg/sigagg.go

Status Resolved: See Resolution
Rating Informational

Description

Within the sigagg module there is lack of validation that Aggregate() has received t unqiue parital signatures.
The function takes parSigs as a parameter, which are converted to the blsSigs mapping. There is a lack of validation
to ensure there are not duplicate parSig.ShareIdx within the parSigs array.
If any duplicates occur then len(blsSigs) will be below the threshold and the reconstructed aggregate will be invalid.
func (a *Aggregator) Aggregate(ctx context.Context, duty core.Duty, pubkey core.PubKey, parSigs []core.ParSignedData) error {

ctx = log.WithTopic(ctx, "sigagg")

if len(parSigs) < a.threshold { // @audit does not account for duplicates
return errors.New("require threshold signatures")

} else if a.threshold == 0 {
return errors.New("invalid threshold config")

}

// Get all partial signatures.
blsSigs := make(map[int]tblsv2.Signature)
for _, parSig := range parSigs {

sig, err := tblsconv2.SigFromCore(parSig.Signature())
if err != nil {

return errors.Wrap(err, "signature from core")
}
blsSigs[parSig.ShareIdx] = sig

}

// ...

The severity is raised as information as parsigdb module should not call Aggregate() with duplicate indexes.

Recommendations

To prevent the possibility of this issue occurring, consider enforcing len(blsSigs) == a.threshold .

Resolution

The recommended solution has been implemented in PR #2061.

Page | 32

https://github.com/ObolNetwork/charon/pull/2061/files

Charon Detailed Findings

OBOL-17 sigagg Does Not Verify the Reconstructed Signature
Asset core/sigagg/sigagg.go

Status Resolved: See Resolution
Rating Informational

Description

After the partials have been used to reconstruct an aggregate signature there is a lack of validation to ensure thereconstructed signature is valid.
Within the function Aggregate() , if malformed partial signatures have been supplied, the reconstructed signature will
be invalid. The invalid signature will be unnoticed and passed to sigaggdb .

Recommendations

Consider using the public key and message to validate the reconstructed signature is valid in Aggregate() .

Resolution

PR #2123 updates the code such that it will verify an aggregate signature when it is reconstructed.

Page | 33

https://github.com/ObolNetwork/charon/pull/2123/files

Charon Detailed Findings

OBOL-18 Aggregate Lock Only Collects t Signatures Rather Than n

Asset dkg/dkg.go

Status Closed: See Resolution
Rating Informational

Description

The AggregateLock signature is intended to be the summation of all signatures of each set. There is a limitation in the
code when only aggregates t signatures from each validation set rather than the number of nodes.

391 peerSigs, err := ex.exchange(ctx, sigLock, lockHashSig)
if err != nil {

393 return cluster.Lock{}, err
}

395

397 pubkeyToShares := make(map[core.PubKey]share)
for _, sh := range shares {

399 pk, err := core.PubKeyFromBytes(sh.PubKey[:])
if err != nil {

401 return cluster.Lock{}, err
}

403

405 pubkeyToShares[pk] = sh
}

407

409 aggSigLockHash, aggPkLockHash, err := aggLockHashSig(peerSigs, pubkeyToShares, lock.LockHash)

Since ex.exchange() will only fetch t signatures, not all signatures and public keys are aggregated.
The result is len(peerSigns[pk]) == t when it should equal to the number of nodes.
The severity is rated as informational sincewith t signatures it is possible to reconstruct any other partial value. Hence,signatures from other parties can be calculated from the logs.

Recommendations

Modify the exchanger to fetch n signatures if the duty is for the lock signature.

Resolution

The issue is deemed invalid the return value of len(peerSigns) is in fact the number of validators rather than thethreshold.
This is covered by line [92-95] in exchanger.go::exchange() which break when e.numVals signatures have been re-ceived.

Page | 34

Charon Detailed Findings

OBOL-19 CreateDKG Allows the Threshold to be Larger Than the Number of Operators
Asset cmd/createdkg.go

Status Resolved: See Resolution
Rating Informational

Description

There is a lack of sanity checks in the createdkg command to ensure the threshold is less than the number of parties.
It would not be possible to run a valid DKG if the threshold is larger than the number of parties as Lagrange interpolationwill fail. However, this issue is not raised during the createdkg command which will execute successfully.
The severity is rated as information as this would be a configuration error and occur before the DKG is run. If the DKGis executed it would always fail.

Recommendations

Consider adding a sanity check to ensure threshold is less than the number of operators in the createdkg command.

Resolution

The recommendation was implemented in PR #2136 to ensure the threshold is not greater than the number of nodes.

Page | 35

https://github.com/ObolNetwork/charon/pull/2136/files

Charon Detailed Findings

OBOL-20 CreateDKG Does Not Validate the Checksum of the Withdrawal Addresses
Asset cmd/createdkg.go

Status Resolved: See Resolution
Rating Informational

Description

The function validateWithdrawalAdds() does not validate the checksum of the address is valid.
The return value of eth2util.ChecksumAddress() is the checksum address of the decoded hex string addr . Since the
return value is dropped there are no checks to ensure addr is in checksum format.
The impact is malformed withdrawal addresses could be submitted as the withdrawal address for the validator. If adeposit is processed with an invalid withdrawal address the deposit will be permanently lost.
func validateWithdrawalAddrs(addrs []string, network string) error {

for _, addr := range addrs {
if _, err := eth2util.ChecksumAddress(addr); err != nil { //@audit consider checking the return value matches addr

return errors.Wrap(err, "invalid withdrawal address", z.Str("addr", addr))
}

// We cannot allow a zero withdrawal address on mainnet or gnosis.
if isMainNetwork(network) && addr == defaultWithdrawalAddr {

return errors.New("zero address forbidden on this network", z.Str("network", network))
}

}

return nil
}

Recommendations

Consider enforcingwithdrawal addresses to be checksumaddresses and validating them in validateWithdrawalAddrs() .

Resolution

Additional checks have been added in PR #2136 which ensure the supplied address is in checksum format.

Page | 36

https://github.com/ObolNetwork/charon/pull/2136/files

Charon Detailed Findings

OBOL-21 Miscellaneous General Comments
Asset contracts/*

Status Resolved:

Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. Inconsistent use of "relay" vs "bootnode".
• relay: cmd/relay.go on line [33]
• bootnode: docs/structure.md on line [71]

2. Invalid comment about function name.
to0xHex is referenced however the function name is from0xHex() in cluser/helpers.go line [233].

3. Inconsistent variable names tp vs tx for kcTransport .
See dkg/keycast.go line [55-92].

4. Spelling and grammar errors.

• Grammar cluster/definition.go on line [247].
• "enode" in p2p/peer.go on line [121].

5. Open TODOs with minimal security impact.
The following TODOs have been noted in the code as potential improvements but have minimal security impact.

• cmd/createdkg.go#L130
• core/parsigdb/memory.go#L94
• app/peerinfo/peerinfo.go#L208-L209
• app/app.go#L783
• app/app.go#L855
• app/app.go#L866

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team have acknowledged these findings, addressing them where appropriate in PR #2181.

Page | 37

https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/cmd/relay.go#L33
https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/docs/structure.md?plain=1#L71
https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/cluster/helpers.go#L233
https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/dkg/keycast.go#L55-L92
https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/cluster/definition.go#L247
https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/p2p/peer.go#L121
https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/cmd/createdkg.go#L130
https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/core/parsigdb/memory.go#L94
https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/app/peerinfo/peerinfo.go#L208-L209
https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/app/app.go#L783
https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/app/app.go#L855
https://github.com/ObolNetwork/charon/blob/707b07a556c459dfa8d1e6e5fe29b966d2f4d2bd/app/app.go#L866
https://github.com/ObolNetwork/charon/pull/2181

Charon Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document.The native Go Lang test framework was used to perform these tests and fuzzers and the output is given below.
--- FAIL: FuzzDecodeBytes (0.00s)

--- FAIL: FuzzDecodeBytes/0c4654b58f6d2016 (0.00s)
panic: runtime error: slice bounds out of range [:-7264253215423582151] [recovered]

panic: runtime error: slice bounds out of range [:-7264253215423582151]

goroutine 78 [running]:
testing.tRunner.func1.2({0x15c73c0, 0xc00003c390})

/usr/local/go/src/testing/testing.go:1526 +0x24e
testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1529 +0x39f
panic({0x15c73c0, 0xc00003c390})

/usr/local/go/src/runtime/panic.go:884 +0x213
github.com/obolnetwork/charon/eth2util/rlp.DecodeBytes({0xc000a14d50, 0xa, 0x10})

/home/knaps/engagements/obol/obol-review/code/charon/eth2util/rlp/rlp.go:88 +0x1fb
github.com/obolnetwork/charon/eth2util/rlp_test.FuzzDecodeBytes.func1(0x0?, {0xc000a14d50?, 0x0?, 0x484719?})

/home/knaps/engagements/obol/obol-review/code/charon/eth2util/rlp/rlp_test.go:61 +0x27
reflect.Value.call({0x14c6900?, 0x19d6d30?, 0x469756?}, {0x16467f5, 0x4}, {0xc0004cf2f0, 0x2, 0x2?})

/usr/local/go/src/reflect/value.go:586 +0xb07
reflect.Value.Call({0x14c6900?, 0x19d6d30?, 0x1fcb828?}, {0xc0004cf2f0?, 0x163efe0?, 0xc000a14d90?})

/usr/local/go/src/reflect/value.go:370 +0xbc
testing.(*F).Fuzz.func1.1(0xc0009031e0?)

/usr/local/go/src/testing/fuzz.go:335 +0x3f3
testing.tRunner(0xc000903380, 0xc0003a8120)

/usr/local/go/src/testing/testing.go:1576 +0x10b
created by testing.(*F).Fuzz.func1

/usr/local/go/src/testing/fuzz.go:322 +0x5b9
exit status 2
FAIL github.com/obolnetwork/charon/eth2util/rlp 0.020s

--

--- FAIL: FuzzDecodeBytesList (0.00s)
--- FAIL: FuzzDecodeBytesList/031b8be6dad7ca5f (0.00s)

panic: runtime error: slice bounds out of range [:-58493811630788525] [recovered]
panic: runtime error: slice bounds out of range [:-58493811630788525]

goroutine 66 [running]:
testing.tRunner.func1.2({0x15c73c0, 0xc000b20048})

/usr/local/go/src/testing/testing.go:1526 +0x24e
testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1529 +0x39f
panic({0x15c73c0, 0xc000b20048})

/usr/local/go/src/runtime/panic.go:884 +0x213
github.com/obolnetwork/charon/eth2util/rlp.DecodeBytesList({0xc000aa40c0, 0x24, 0x30})

/home/knaps/engagements/obol/obol-review/code/charon/eth2util/rlp/rlp.go:54 +0x4e6
github.com/obolnetwork/charon/eth2util/rlp_test.FuzzDecodeBytesList.func1(0x0?, {0xc000aa40c0?, 0x0?, 0x484719?})

/home/knaps/engagements/obol/obol-review/code/charon/eth2util/rlp/rlp_test.go:46 +0x27
reflect.Value.call({0x14c6900?, 0x19d6d10?, 0x469756?}, {0x16467f5, 0x4}, {0xc00086e1e0, 0x2, 0x2?})

/usr/local/go/src/reflect/value.go:586 +0xb07
reflect.Value.Call({0x14c6900?, 0x19d6d10?, 0x1fcb758?}, {0xc00086e1e0?, 0x163efe0?, 0xc000874188?})

/usr/local/go/src/reflect/value.go:370 +0xbc
testing.(*F).Fuzz.func1.1(0x0?)

/usr/local/go/src/testing/fuzz.go:335 +0x3f3
testing.tRunner(0xc000a02680, 0xc000132090)

/usr/local/go/src/testing/testing.go:1576 +0x10b
created by testing.(*F).Fuzz.func1

/usr/local/go/src/testing/fuzz.go:322 +0x5b9
exit status 2
FAIL github.com/obolnetwork/charon/eth2util/rlp 0.022s

--

Page | 38

Charon Test Suite

--- FAIL: FuzzParse (0.10s)
--- FAIL: FuzzParse (0.00s)

testing.go:1485: panic: runtime error: slice bounds out of range [:-805215019090496291]
goroutine 56 [running]:
runtime/debug.Stack()

/usr/local/go/src/runtime/debug/stack.go:24 +0x9e
testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1485 +0x1f6
panic({0x15c9bc0, 0xc00016e078})

/usr/local/go/src/runtime/panic.go:884 +0x213
github.com/obolnetwork/charon/eth2util/rlp.DecodeBytesList({0xc0001677d0, 0x25, 0x25})

/home/knaps/engagements/obol/obol-review/code/charon/eth2util/rlp/rlp.go:54 +0x4e6
github.com/obolnetwork/charon/eth2util/enr.Parse({0xc000983ac1, 0x36})

/home/knaps/engagements/obol/obol-review/code/charon/eth2util/enr/enr.go:65 +0x23b
github.com/obolnetwork/charon/eth2util/enr_test.FuzzParse.func1(0x0?, {0xc000983ac1?, 0x0?})

/home/knaps/engagements/obol/obol-review/code/charon/eth2util/enr/enr_test.go:36 +0x25
reflect.Value.call({0x14c96c0?, 0x19d9ab0?, 0x469756?}, {0x16491f7, 0x4}, {0xc000158ff0, 0x2, 0x2?})

/usr/local/go/src/reflect/value.go:586 +0xb07
reflect.Value.Call({0x14c96c0?, 0x19d9ab0?, 0x1fcfe20?}, {0xc000158ff0?, 0x16419e0?, 0xc00017bb60?})

/usr/local/go/src/reflect/value.go:370 +0xbc
testing.(*F).Fuzz.func1.1(0x0?)

/usr/local/go/src/testing/fuzz.go:335 +0x3f3
testing.tRunner(0xc0000de340, 0xc0001b4510)

/usr/local/go/src/testing/testing.go:1576 +0x10b
created by testing.(*F).Fuzz.func1

/usr/local/go/src/testing/fuzz.go:322 +0x5b9
exit status 1
FAIL github.com/obolnetwork/charon/eth2util/enr 0.182s

--

--- FAIL: TestSamirShareFromProtoCrash (0.00s)
panic: runtime error: invalid memory address or nil pointer dereference [recovered]

panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x0 pc=0x100e2b1]

goroutine 7 [running]:
testing.tRunner.func1.2({0x11c4900, 0x2091ef0})

/usr/local/go/src/testing/testing.go:1526 +0x24e
testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1529 +0x39f
panic({0x11c4900, 0x2091ef0})

/usr/local/go/src/runtime/panic.go:884 +0x213
github.com/obolnetwork/charon/dkg.keyFromProto(...)

/home/knaps/engagements/obol/obol-review/code/charon/dkg/frostp2p.go:395
github.com/obolnetwork/charon/dkg.shamirShareFromProto(...)

/home/knaps/engagements/obol/obol-review/code/charon/dkg/frostp2p.go:314
github.com/obolnetwork/charon/dkg.TestSamirShareFromProtoCrash(0x0?)

/home/knaps/engagements/obol/obol-review/code/charon/dkg/keycast_internal_test.go:140 +0x71
testing.tRunner(0xc0009831e0, 0x16f6c00)

/usr/local/go/src/testing/testing.go:1576 +0x10b
created by testing.(*T).Run

/usr/local/go/src/testing/testing.go:1629 +0x3ea
exit status 2
FAIL github.com/obolnetwork/charon/dkg 0.014s

--

--- FAIL: TestRound1CastFromProtoCrash (0.00s)
panic: runtime error: invalid memory address or nil pointer dereference [recovered]

panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x28 pc=0x1006d92]

goroutine 20 [running]:
testing.tRunner.func1.2({0x11c4900, 0x2091ef0})

/usr/local/go/src/testing/testing.go:1526 +0x24e
testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1529 +0x39f
panic({0x11c4900, 0x2091ef0})

/usr/local/go/src/runtime/panic.go:884 +0x213

Page | 39

Charon Test Suite

github.com/obolnetwork/charon/dkg.keyFromProto(...)
/home/knaps/engagements/obol/obol-review/code/charon/dkg/frostp2p.go:395

github.com/obolnetwork/charon/dkg.round1CastFromProto(0xc0000e3580)
/home/knaps/engagements/obol/obol-review/code/charon/dkg/frostp2p.go:354 +0x3b2

github.com/obolnetwork/charon/dkg.TestRound1CastFromProtoCrash(0x0?)
/home/knaps/engagements/obol/obol-review/code/charon/dkg/keycast_internal_test.go:149 +0xbc

testing.tRunner(0xc0003af520, 0x16f6bf0)
/usr/local/go/src/testing/testing.go:1576 +0x10b

created by testing.(*T).Run
/usr/local/go/src/testing/testing.go:1629 +0x3ea

exit status 2
FAIL github.com/obolnetwork/charon/dkg 0.020s

--

--- FAIL: TestRound2CastFromProtoCrash (0.00s)
panic: runtime error: invalid memory address or nil pointer dereference [recovered]

panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x28 pc=0x1007133]

goroutine 38 [running]:
testing.tRunner.func1.2({0x11c4900, 0x2091ef0})

/usr/local/go/src/testing/testing.go:1526 +0x24e
testing.tRunner.func1()

/usr/local/go/src/testing/testing.go:1529 +0x39f
panic({0x11c4900, 0x2091ef0})

/usr/local/go/src/runtime/panic.go:884 +0x213
github.com/obolnetwork/charon/dkg.keyFromProto(...)

/home/knaps/engagements/obol/obol-review/code/charon/dkg/frostp2p.go:395
github.com/obolnetwork/charon/dkg.round2CastFromProto(0xc00056a360)

/home/knaps/engagements/obol/obol-review/code/charon/dkg/frostp2p.go:379 +0xd3
github.com/obolnetwork/charon/dkg.TestRound2CastFromProtoCrash(0x0?)

/home/knaps/engagements/obol/obol-review/code/charon/dkg/keycast_internal_test.go:158 +0x88
testing.tRunner(0xc0000d7380, 0x16f6bf8)

/usr/local/go/src/testing/testing.go:1576 +0x10b
created by testing.(*T).Run

/usr/local/go/src/testing/testing.go:1629 +0x3ea
exit status 2
FAIL github.com/obolnetwork/charon/dkg 0.019s

Page | 40

Charon Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

Page | 41

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Kryptology Does Not Verify The Length of Commitments
	Frost DKG Does Not Validate Message Source Matches the Sender
	nil Pointer References From Protobuf Messages
	Inadequate Input Parameter Checks Resulting in Slice Bounds Out-of-Range Error
	Lack of Size Checks When Slicing Arrays
	Insufficient Validation of Consensus Messages Leads to Panics
	QBFT Consensus Allows Replay of Justification Messages
	Insufficient Error Handling
	Panics in coinbase/kryptology Frost Protocol
	Frost Broadcast Messages Do Not Use Reliable Broadcast
	Vulenerable Dependencies
	Outdated Dependencies
	RLP Length in Bits Rather Than Bytes
	Duplicate Keys Allowed in ENR
	Insufficient Validation of Consensus Message Types
	sigagg Does Not Ensure t Partials Are Received
	sigagg Does Not Verify the Reconstructed Signature
	Aggregate Lock Only Collects t Signatures Rather Than n
	CreateDKG Allows the Threshold to be Larger Than the Number of Operators
	CreateDKG Does Not Validate the Checksum of the Withdrawal Addresses
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

